Evaluation of a fiberoptic-based system for measurement of optical properties in highly attenuating turbid media
نویسندگان
چکیده
BACKGROUND Accurate measurements of the optical properties of biological tissue in the ultraviolet A and short visible wavelengths are needed to achieve a quantitative understanding of novel optical diagnostic devices. Currently, there is minimal information on optical property measurement approaches that are appropriate for in vivo measurements in highly absorbing and scattering tissues. We describe a novel fiberoptic-based reflectance system for measurement of optical properties in highly attenuating turbid media and provide an extensive in vitro evaluation of its accuracy. The influence of collecting reflectance at the illumination fiber on estimation accuracy is also investigated. METHODS A neural network algorithm and reflectance distributions from Monte Carlo simulations were used to generate predictive models based on the two geometries. Absolute measurements of diffuse reflectance were enabled through calibration of the reflectance system. Spatially-resolved reflectance distributions were measured in tissue phantoms at 405 nm for absorption coefficients (mu(a)) from 1 to 25 cm-1 and reduced scattering coefficients (mu'(s)) from 5 to 25 cm-1. These data and predictive models were used to estimate the optical properties of tissue-simulating phantoms. RESULTS By comparing predicted and known optical properties, the average errors for mu(a) and mu'(s) were found to be 3.0% and 4.6%, respectively, for a linear probe approach. When bifurcated probe data was included and samples with mu(a) values less than 5 cm-1 were excluded, predictive errors for mu(a) and mu'(s) were further reduced to 1.8% and 3.5%. CONCLUSION Improvements in system design have led to significant reductions in optical property estimation error. While the incorporation of a bifurcated illumination fiber shows promise for improving the accuracy of mu's estimates, further study of this approach is needed to elucidate the source of discrepancies between measurements and simulation results at low mu(a) values.
منابع مشابه
The study of propagation of a femtosecond laser pulse in the breast tissue
In this paper, the evaluation of time profile of a femtosecond pulse laser propagated through biological tissues is studied. The majority of the biological tissues with a high scattering anisotropy must be considered as turbid media, that their optical responses are complicated. To study the propagation of ultra-short pulse in turbid media, the diffuse equation is used. In this study, the analy...
متن کاملExperimental images of heterogeneous turbid media by frequency-domain diffusing-photon tomography.
We present images of heterogeneous turbid media derived from measurements of diffuse photon-density waves traveling through highly scattering tissue phantoms. To our knowledge, the images are the first experimental reconstruction based on data collected in the frequency domain. We demonstrate images of both absorbing and scattering heterogeneities and show that this method is sensitive to the o...
متن کاملA Robust Monte Carlo Model for the Extraction of Biological Absorption and Scattering In Vivou
We have a toolbox to quantify tissue optical properties that is composed of specialized fiberoptic probes for UV-visible diffuse reflectance spectroscopy and a fast, scalable inverse Monte Carlo (MC) model. In this paper, we assess the robustness of the toolbox for quantifying physiologically relevant parameters from turbid tissue-like media. In particular, we consider the effects of using diff...
متن کاملTreatment of Highly Turbid Water by Polyaluminum Ferric Chloride (PAFCL)
Background & Aims of the Study: In some situation like rainfall seasons raw water become very turbid so it affected the water treatment plant processes and quality of produced water. Treatment of very high turbid water has some concerns like precursors for disinfection by-products and very loading rate of particle on filter's media and consequently increases in water consumptio...
متن کاملPerformance Evaluation of Photon Diffusion Models Configured in Planar Source Illumination Geometry for Quantifying the Optical Properties of Turbid Media
In this study, we employed the planar source illumination (PSI) geometry to quantify optical properties of turbid media. Delta-P1 and P1 photon diffusion models were utilized to calculate the reflectance in the PSI geometry. The performance of the P1 and Delta-P1 diffusion models was evaluated using Monte Carlo simulation and liquid phantom measurements. Our results revealed that Delta-P1 diffu...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- BioMedical Engineering OnLine
دوره 5 شماره
صفحات -
تاریخ انتشار 2006